Current Issue : January - March Volume : 2012 Issue Number : 1 Articles : 7 Articles
Background\r\nThe study aimed to investigate the pharmacokinetics of intravenous ciprofloxacin and the adequacy of 400 mg every 12 hours in critically ill Intensive Care Unit (ICU) patients on continuous veno-venous haemodiafiltration (CVVHDF) with particular reference to the effect of achieved flow rates on drug clearance.\r\nMethods\r\nThis was an open prospective study conducted in the intensive care unit and research unit of a university teaching hospital. The study population was seven critically ill patients with sepsis requiring CVVHDF.\r\nBlood and ultrafiltrate samples were collected and assayed for ciprofloxacin by High Performance Liquid Chromatography (HPLC) to calculate the model independent pharmacokinetic parameters; total body clearance (TBC), half-life (t1/2) and volume of distribution (Vd). CVVHDF was performed at prescribed dialysate rates of 1 or 2 L/hr and ultrafiltration rate of 2 L/hr. The blood flow rate was 200 ml/min, achieved using a Gambro blood pump and Hospal AN69HF haemofilter.\r\n\r\nResults\r\nSeventeen profiles were obtained. CVVHDF resulted in a median ciprofloxacin t1/2 of 13.8 (range 5.15-39.4) hr, median TBC of 9.90 (range 3.10-13.2) L/hr, a median Vdss of 125 (range 79.5-554) L, a CVVHDF clearance of 2.47+/-0.29 L/hr and a clearance of creatinine (Clcr) of 2.66+/-0.25 L/hr. Thus CVVHDF, at an average flow rate of ~3.5 L/hr, was responsible for removing 26% of ciprofloxacin cleared. At the dose rate of 400 mg every 12 hr, the median estimated Cpmax/MIC and AUC0-24/MIC ratios were 10.3 and 161 respectively (for a MIC of 0.5 mg/L) and exceed the proposed criteria of >10 for Cpmax/MIC and > 100 for AUC0-24/MIC. There was a suggestion towards increased ciprofloxacin clearance by CVVHDF with increasing effluent flow rate.\r\nConclusions\r\nGiven the growing microbial resistance to ciprofloxacin our results suggest that a dose rate of 400 mg every 12 hr, may be necessary to achieve the desired pharmacokinetic - pharmacodynamic (PK-PD) goals in patients on CVVHDF, however an extended interval may be required if there is concomitant hepatic impairment. A correlation between ciprofloxacin clearance due to CVVHDF and creatinine clearance by the filter was observed (r2 = 0.76), providing a useful clinical surrogate marker for ciprofloxacin clearance within the range studied....
Background\r\nCritical illness, mediated by trauma or sepsis, can lead to physiological changes that alter the pharmacokinetics of antibiotics and may result in sub-therapeutic concentrations at the sites of infection. The first aim of this project is to identify the clinical characteristics of critically ill patients with significant trauma that have been recently admitted to ICU that may predict the dosing requirements for the antibiotic, cefazolin. The second aim of this is to identify the clinical characteristics of critically ill patients with sepsis that may predict the dosing requirements for the combination antibiotic, piperacillin-tazobactam.\r\nMethods/Design\r\nThis is an observational pharmacokinetic study of patients with trauma (cefazolin) or with sepsis (piperacillin-tazobactam). Participants will have samples from blood and urine, collected at different intervals. Patients will also have a microdialysis catheter inserted into subcutaneous tissue to measure interstitial fluid penetration of the antibiotic. Participants will be administered sinistrin, indocyanine green and sodium bromide as well as have cardiac output monitoring performed and tetrapolar bioimpedance to determine physiological changes resulting from pathology. Analysis of samples will be performed using validated liquid chromatography tandem mass-spectrometry. Pharmacokinetic analysis will be performed using non-linear mixed effects modeling to determine individual and population pharmacokinetic parameters of antibiotics.\r\nDiscussion\r\nThe study will describe cefazolin and piperacillin-tazobactam concentrations in plasma and the interstitial fluid of tissues in trauma and sepsis patients respectively. The results of this study will guide clinicians to effectively dose these antibiotics in order to maximize the concentration of antibiotics in the interstitial fluid of tissues....
Variable warfarin response during treatment initiation poses a significant challenge to providing optimal anticoagulation therapy. We investigated the determinants of initial warfarin response in a cohort of 167 patients. During the first nine days of treatment with pharmacogenetics-guided dosing, S-warfarin plasma levels and international normalized ratio were obtained to serve as inputs to a pharmacokinetic-pharmacodynamic (PK-PD) model. Individual PK (S-warfarin clearance) and PD (Imax) parameter values were estimated. Regression analysis demonstrated that CYP2C9 genotype, kidney function, and gender were independent determinants of S-warfarin clearance. The values for Imax were dependent on VKORC1 and CYP4F2 genotypes, vitamin K status (as measured by plasma concentrations of proteins induced by vitamin K absence, PIVKA-II) and weight. Importantly, indication for warfarin was a major independent determinant of Imax during initiation, where PD sensitivity was greater in atrial fibrillation than venous thromboembolism. To demonstrate the utility of the global PK-PD model, we compared the predicted initial anticoagulation responses with previously established warfarin dosing algorithms. These insights and modeling approaches have application to personalized warfarin therapy....
This study was to evaluate and compare the pharmacokinetic and pharmacodynamic behavior of two formulations of furosemide (CAS 54-31-9) 40 mg tablets, administered as a single dose to healthy subjects. Plasma concentrations of furosemide were determined with a validated method by liquid chromatography coupled to mass spectrometry (LC-MS/MS). We obtained the parameters: AUC0-t, AUC0-8, Kel, T1/2, Cmax e Tmax. The following parameters were determined in urine: Sodium, Potassium and Chlorine and the total volume. The 90% confidence intervals for the ratio of Cmax (93.63-121.92%), AUC0ââ?¬â??t (96.80-115.72%) and AUC0-8 (98.45-117.43%) respectively for test and reference. Statistical analysis of the similarity of the parameters for urinary volume, excretion of sodium, potassium and chlorine and assuming that both formulations reach the same plasma levels, we expect that the pharmacological effect is also the same. Whereas the rate and extent of absorption, both products can be considered therapeutic equivalents...
Background\r\nUpper and lower respiratory tract infections (RTIs) account for a substantial portion of outpatient antibiotic utilization. However, the pharmacodynamic activity of commonly used oral antibiotic regimens has not been studied against clinically relevant pathogens. The objective of this study was to assess the probability of achieving the requisite pharmacodynamic exposure for oral antibacterial regimens commonly prescribed for RTIs in adults against bacterial isolates frequently involved in these processes (S. pneumoniae, H. influenzae, and M. catharralis).\r\nMethods\r\nUsing a 5000-subject Monte Carlo simulation, the cumulative fractions of response (CFR), (i.e., probabilities of achieving requisite pharmacodynamic targets) for the most commonly prescribed oral antibiotic regimens, as determined by a structured survey of medical prescription patterns, were assessed against local respiratory bacterial isolates from adults in S�£o Paulo collected during the same time period. Minimal inhibitory concentration (MIC) of 230 isolates of Streptococcus pneumoniae (103), Haemophilus influenzae (98), and Moraxella catharralis (29) from a previous local surveillance were used.\r\nResults\r\nThe most commonly prescribed antibiotic regimens were azithromycin 500 mg QD, amoxicillin 500 mg TID, and levofloxacin 500 mg QD, accounting for 58% of the prescriptions. Varied doses of these agents, plus gatifloxacin, amoxicillin-clavulanate, moxifloxacin, and cefaclor made up the remaining regimens. Utilizing aggressive pharmacodynamic exposure targets, the only regimens to achieve greater than 90% CFR against all three pathogens were amoxicillin/amoxicillin-clavulanate 500 mg TID (> 91%), gatifloxacin 400 mg QD (100%), and moxifloxacin 400 mg QD (100%). Considering S. pneumoniae isolates alone, azithromycin 1000 mg QD also achieved greater than 90% CFR (91.3%).\r\nConclusions\r\nThe only regimens to achieve high CFR against all three pathogen populations in both scenarios were gatifloxacin 400 mg QD, moxifloxacin 400 mg QD, and amoxicillin-clavulanate 500 mg TID. These data suggest the need for reconsideration of empiric antibiotic regimen selection among adult patients with RTIs in the S�£o Paulo area. Additionally, this type of study could be used to optimize prescribing patterns in specific regions in light of emerging resistance....
The combination of drugs may be a result of a necessary therapeutic strategy against a single disease or a fortuitous treatment of two or more health disorders. In either case, a consequence of such approach is the increased risk of drug interactions and subsequent adverse effects. For the elderly, the probability of these events is significantly increased compared to other age groups, not only because of combining medications but also agerelated pharmacokinetic (absorption, distribution, biotransformation and excretion processes) alteration. Since the growth rate of the elderly population worldwide is rapidly increasing, clinicians should be extremely cautious of the drugs prescribed to older patients in order to minimize drug interactions and therapeutic failure....
Introduction\r\nAcetazolamide is commonly given to chronic obstructive pulmonary disease (COPD) patients with metabolic alkalosis. Little is known of the pharmacodynamics of acetazolamide in the critically ill. We undertook the pharmacodynamic modeling of bicarbonate response to acetazolamide in COPD patients under mechanical ventilation.\r\nMethods\r\nThis observational, retrospective study included 68 invasively ventilated COPD patients who received one or multiple doses of 250 or 500 mg of acetazolamide during the weaning period. Among the 68 investigated patients, 207 time-serum bicarbonate observations were available for analysis. Population pharmacodynamics was modeled using a nonlinear mixedeffect model. The main covariates of interest were baseline demographic data, Simplified Acute Physiology Score II (SAPS II) at ICU admission, cause of respiratory failure, co-prescription of drugs interfering with the acid-base equilibrium, and serum concentrations of protein, creatinin, potassium and chloride. The effect of acetazolamide on serum bicarbonate levels at different doses and in different clinical conditions was subsequently simulated in silico.\r\nResults\r\nThe main covariates interacting with acetazolamide pharmacodynamics were SAPS II at ICU admission (P = 0.01), serum chloride (P < 0.001) and concomitant administration of corticosteroids (P = 0.02). Co-administration of furosemide significantly decreased bicarbonate elimination. Acetazolamide induced a decrease in serum bicarbonate with a dose-response relationship. The amount of acetazolamide inducing 50% of the putative maximum effect was 117 �± 21 mg. According to our model, an acetazolamide dosage > 500 mg twice daily is required to reduce serum bicarbonate concentrations > 5 mmol/L in the presence of high serum chloride levels or coadministration of systemic corticosteroids or furosemide.\r\nConclusions\r\nThis study identified several covariates that influenced acetazolamide pharmacodynamics and could allow a better individualization of acetazolamide dosing when treating COPD patients with metabolic alkalosis....
Loading....